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ABSTRACT

Aims. The influence of the rotation of the Sun on non-radial p-modes with high wave numbers l is studied. To investigate and
understand the basic properties of these modes, it is sufficient to consider only the outer layers of the Sun, which can be approximated
by a plane layer with constant gravity.
Methods. We use a model with a smooth transition between a polytropic convection zone and an isothermal atmosphere. The rotation
is simulated by a constant horizontal wind. For this model, using the column mass instead of the geometrical height, the adiabatic
wave equation of the pressure perturbation can be reduced to Whittaker’s differential equation. From boundary conditions we obtain
the dispersion relation. The geometrical height is a simple elementary function of the column mass.
Results. The dispersion relation F(ω, k) = 0 is a higher order algebraic equation in both frequency and horizontal wave number,
which must be solved numerically. We analyze the behavior of the dispersion curves of modes with an adiabatic exponent γ = 5/3 for
layers with polytropic indices n = 3 and n = 3/2. The f-mode is considered separately. For the understanding of the results we also
consider modes of a homogeneous gas. We compare the k − ω diagram of our idealized model with the k − ω diagram of a real solar
model.
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1. Introduction

To study basic properties of solar p-modes with l � 1, it is suf-
ficient to consider only the upper convection zone and the at-
mospheric layers of the Sun. For l � 1, the approach of these
regions of the Sun by a plane layer with constant gravity is com-
mon. A simple model of the convection zone is a polytropic layer
with a positive polytropic index n. In this case, the pressure and
the temperature vanish at some height. The solution of the adi-
abatic wave equation of this layer has to satisfy a zero pressure
boundary condition. By the assumption of vanishing pressure
perturbations in the interior, a discrete spectrum of modes is ob-
tained. This problem was already investigated by Lamb (1932).
The isolated polytropic convection zone corresponds to simple
polytropic stellar models with zero pressure boundary condition
and moderate central densities, as far as Cowling’s classification
is valid.

We use the same procedure as in the windless case studied
by Schmitz & Steffens (1999). The model consists of a convec-
tion zone and an atmosphere, which are fitted by a smooth tem-
perature transition. The convection zone becomes polytropic as
z→ −∞, the atmosphere becomes isothermal as z→ +∞.

In Sect. 2 we discuss previous works on oscillations of rotat-
ing stars. Section 3 deals with the structure of the static layer.
In Sect. 4 we present the adiabatic wave equation. The wave
equation of the Lagrangian pressure perturbation is formulated

� Dedicated to Franz-Ludwig Deubner, who celebrated his 75th birth-
day on June 2, 2009.

in terms of the column mass. Section 5 deals with the reduction
of the wave equation to Whittaker’s differential equation. The
general solution of this equation is considered in Sect. 6. The
dispersion relation of the modes of the layer, an algebraic equa-
tion of a higher order in ω2 and the horizontal wave numbers is
derived in Sect. 7. It is solved numerically. In Sect. 8 we consider
the f-mode, and in Sect. 9 we discuss oscillations of a homoge-
nous gas. In Sect. 10 we present dispersion curves for the Sun in
the non-isentropic case γ = 5/3 and 1 + 1/n = 4/3 and for the
isentropic case γ = 1 + 1/n = 5/3.

2. Oscillations of rotating stars

There are numerous text-books (e.g. Tassoul 1978), compen-
dia (e.g. Ledoux & Walraven 1958), review-articles (e.g. Saio
1993) and publications on the field of oscillations and the stabil-
ity of rotating stars (e.g. Lynden-Bell 1967) and the stability of
gaseous clouds (e.g. Schmitz 1984).

As regards the Sun, it is now nearly 35 years since Deubner’s
observations of low wavenumber non-radial acoustic eigen-
modes (Deubner 1975) that launched the art and science of he-
lioseismology and led to the first determination of the radial dif-
ferential roation of the Sun (Deubner 1979, see also review by
Deubner & Gough 1984).

Schou et al. (1998) used the splitting of the frequencies of the
global resonant acoustic modes induced by large-scale flows and
rotation to determine the Sun’s interior angular velocity. In all
these works a zero-pressure boundary condition is assumed, i.e.
the pressure becomes zero at the stellar radius. With increasing
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l, the region of the oscillation shifts outwards into the outer con-
vection zone and the atmosphere. Thus for high degree-modes,
the detailed structure of this layer must be taken into account.
For stars without rotation this was done e.g. by Christensen-
Daalsgard (1980) and for the Sun by e.g. Ando & Osaki (1977).

The model of Schmitz & Steffens (1999) is a simple
approach to the outer layers of the Sun, far from the real mod-
els with ionization and dissoziation considered by Antja & Basu
(1999) and Steffens & Schmitz (2000).

However, it does not make sense to consider the detailed
structure of the outer layers. The VAL-atmosphere, often used
as a standard atmosphere, is not realistic. Calculations in partic-
ular by Carlson & Stein (1995) have shown that the atmosphere
is so dynamic that it is not possible to assign a mean temperature
to the chromosphere.

For these reasons Steffens and Schmitz studied the influence
of cool-temperature and mean-temperature “chromospheres” on
solar oscillations.

Here we present an analytical study of the influence of solar
rotation on the p-mode ridges. We use the model of Schmitz &
Steffens (1999) with a horizontal constant wind. The continuos
wave number kx in the direction of the wind corresponds to the
discrete wave number m, the continuos wave number ky corre-
sponds to the discrete wave number l.

3. The equilibrium layer

Let z be the vertical, outwards directed geometrical coordinate, g
the constant gravity, n the polytropic index, m the column mass,
defined by dm = − ρ dz, p the pressure, ρ the density, a the
isothermal and c the adiabatic sound speed, γ the adiabatic ex-
ponent. We use the equation of state of the classical ideal gas
p = a2 ρ. The atmospheric structure is not influenced by the hor-
izontal wind. The equilibrium condition is p = m g. We put

c2(m) = c2
0 + ε mλ (1)

with λ = 1/(1 + n). For the Sun, the parameter ε is ≈1011 in
cgs-units. For m → 0 the layer becomes isothermal with c = c0,
for large m the layer becomes polytropic with the index n. In the
limit c0 = 0 we obtain the polytropic layer. The density is

ρ(m) =
m g

c2
0/γ + ε mλ

· (2)

The geometrical height z(m) is obtained by integrating dz =
− d m/ρ. We get

z = − 1
g

⎡⎢⎢⎢⎢⎣ c2
0

γ
ln m +

ε

λ
mλ
⎤⎥⎥⎥⎥⎦ . (3)

We have m→ 0 as z→ +∞ and m→ ∞ as z→ −∞, and

c2(z) = − γ g
1 + n

z for z→ −∞. (4)

4. The adiabatic wave equation

Let Δp(z, t) be the Lagrangian pressure perturbation, ξ(z, t) the
displacement. The frequency is denoted by ω, the horizontal
wave numbers by kx and ky. We put

k2 = k2
x + k2

y. (5)

We study adiabatic waves with time dependence exp(iωt). We
assume that the wind velocity v is constant. We put

Ω = ω − v kx. (6)

From the linearized hydrodynamical equations we obtain two
first order equations:

Ωω
dΔp
d z

+ g k2 Δ p = ρ
[
Ω2ω2 − g2 k2

]
ξ (7)

and

Ωωρ c2 d ξ
dz
− ρ g k2 c2 ξ = −

[
ω2 − k2c2 − v kxω

]
Δ p (8)

(see, e.g. Schmitz & Fleck 1994).
From these equations we obtain the wave equation of the

Lagrangian pressure perturbation Δp:

Ω2 ω
d2 Δ p
d z2

+

[
Ω2 g k2 1

ω
−
[
ρ k2 g

1
ω
+

d ρ
d z
Ω
] 1
ρ
Ω ω
] d Δ p

d z

+

[ [
Ω2 ω2 − g2 k2

] 1
ω c2

[
ω2 − k2 c2 − v kxω

]

−
[
ρ k2 g

1
ω
+

d ρ
d z
Ω
] 1
ρ
g k2
]
Δ p = 0, (9)

and the wave equation of the displacement ξ:

Ω2 [Ω2 − k2 c2] c2 d2 ξ

dz2

+ Ω2

⎡⎢⎢⎢⎢⎢⎣ − γ g [ Ω2 − k2 c2] + k2 c2 d c2

d z

⎤⎥⎥⎥⎥⎥⎦ d ξ
dz

+

⎡⎢⎢⎢⎢⎢⎣ k2 [ Ω2 − k2 c2 ]
[
(γ − 1) g2 + g

d c2

d z

]

+ Ω2 [Ω2 − k2 c2 ]2 − Ω2 k2 g
d c2

d z

⎤⎥⎥⎥⎥⎥⎦ ξ = 0. (10)

The wave equation of Δ p has an absorption level, the equation
of ξ an additional reflection level. Therefore we use the equa-
tion of Δ p. Beer (1975) has studied the behavior of waves in an
isothermal atmosphere with constant wind by the wave equation
of the displacement.

Now we take the mass m instead of the height z. We have

d
dz
= − ρ d

dm
(11)

and

d2

dz2
=
g2γ2m2

c4

d2

dm2
+
g2 γ2 m

c4

[
1 − m

c2

d
dm

c2
] d

dm
· (12)

Further,

d
dz
ρ = − γ g ρ

c2

[
1 − m

c2

d
dm

c2
]
. (13)

We finally obtain

d2 Δ p
d m2

+ ( A + B mλ ) m
dΔ p
d m

+ ( C + + D mλ + E m2 λ ) Δ p = 0 (14)
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with

A = − k2 kx v c2

Ω ω2 γ
, (15)

B = − k2 kx v

Ω ω2 γ
ε, (16)

C = [Ω2ω2 + (γ − 1) g2 k2 − Ωω k2 c2]
c2

Ωωg2 γ2
, (17)

D = [Ω2 ω2 + ((−λ + 1) γ − 1) g2 k2 − 2 Ω ω k2 c2 ]

× ε

Ω ω g2 γ2
· (18)

E = − k2 ε2

g2 γ2
· (19)

5. The reduction of the adiabatic wave equation

We put

Δ p = ξν η(ξ) with ξ = mλ. (20)

With these transformations we get

λ2 ξ2
d2 η

d ξ2
+

[
( λ − 1 + A + 2 ν ) λ ξ + B λ ξ2

] d η
d ξ

+

[
νλ (νλ + A − 1) + C + (Bλν + D) ξ + Eξ2

]
η = 0. (21)

We put

ν2 λ2 + (A − 1) λ ν + C = 0, (22)

which gives

ν =
1

2 λ2
[− (A − 1) λ ±

√
(A − 1)2 λ2 − 4 λ2 C ] (23)

Equation (22) reduces to

λ2 ξ
d2 η

d ξ2
+ [ λ B ξ + 2 ν λ2 + λ ( λ − 1 + A ) ]

d η
d ξ

+ [ E ξ + ν λ B + D ] = 0. (24)

Now we put

η = ξ− β/2 exp(−α ξ/2 ) w(ξ). (25)

With this transformation we get

ξ2
d2 w

d ξ2
+

[
( δ − α

2

4
) ξ2

+ ( d − α β
2

) ξ +
β

2
( 1 − β

2
)
]
w = 0, (26)

where

β =
λ − 1
λ
+ 2 ν +

A
λ
, α =

B
λ
, (27)

d =
B ν
λ
+

D
λ2
, δ =

E
λ2
· (28)

Putting

ξ = Λ ζ (29)

with

Λ =
1

2

√
− δ + α

2

4

(30)

we obtain the equation

d2 w

d ζ2
+

[
− 1

4
+ ( d − α β )

Λ

ζ

+ [
1
4
− (

1
4
− β

2
( 1 − β

2
) ) ]

1
ζ2

]
w = 0. (31)

This is Whittaker’s equation

d2 w

dx2
+

[
− 1

4
+
κ

x
+ (

1
4
− μ2 )

1
x2

]
w = 0 (32)

with

κ = ( d − α β ) Λ (33)

and

μ2 = − 1
4
+
β

2
( 1 − β

2
) ). (34)

Finally,

μ2 =
1

4λ2
− ν
λ
+ ν2 − A

2λ
+ (

A
2λ

)2 (35)

and

κ =
1
λ

⎡⎢⎢⎢⎢⎢⎣ D
λ
− A B

2 λ
− B

[ 1
2
− 1

2 λ

] ⎤⎥⎥⎥⎥⎥⎦ Λ. (36)

Now let us assume that k � 0. For real ω2, the coefficient κ is
real, μ is real or imaginary.

6. The solution of the wave equation

Two independent solutions of Whittaker’s equation are

w1 = e− ζ/2 ζ1/2+μ M(
1
2
+ μ − κ, 1 + 2μ, ζ), (37)

w2 = e− ζ/2 ζ1/2+μ U(
1
2
+ μ − κ, 1 + 2μ, ζ), (38)

where M and U are the confluent hypergeometric functions. The
corresponding Lagrangian pressure perturbations are

Δp1 = c1 m1/2+ λμ m−A/2 e−ζ/2−α ξ/2

M(
1
2
+ μ − κ, 1 + 2μ, ζ) (39)

and

Δp2 = c2 m1/2+ λμ m−A/2 e−ζ/2−α ξ/2

U(
1
2
+ μ − κ, 1 + 2μ, ζ), (40)
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where

ζ =
1
Λ

mλ · (41)

The general solution of the wave equation is a superposition of
both solutions. The factor m1/2 mλμ is due to the isothermal at-
mosphere. In the limit m→ 0 where z→ ∞ we obtain

m1/2 mλμ = exp
(
− z

2H
+
λμ z
H

)
with H =

c2
0

γ g
· (42)

In the following, instead of ω2, we use the quantity y defined by

y =
ω2

g k
, (43)

and instead of the wave number k we use the relative wave num-
ber k/k0 with

k0 =
g

4 c2
0 γ
· (44)

7. The dispersion relation of the modes

For real μ we have to select the solution Δp1 with μ > 0.
Therefore,

Δp ∝ ζν+1/2+μ e− ζ/2 M(
1
2
+ μ − κ, 1 + 2μ, ζ). (45)

As M = 1 for z = 0, this solution approaches the evanescently
decaying wave of the unbounded isothermal atmosphere for z→
+∞ when μ > 0.

For z → −∞ or x → +∞ we require vanishing or at least
finite pressure perturbations. This assumption is common and
corresponds to the condition of vanishing non-radial pressure
perturbations in the center of a star.

The asymptotic expansion of M is (Abramowitz & Stegun
1965)

M(a, b, ζ) =
Γ(b)
Γ(a)

eζ ζa−b for ζ → ∞. (46)

We obtain

Δp ∝ xν−κ ex/2 Γ(1 + 2μ)

Γ( 1
2 + μ − κ)

for x → ∞. (47)

Therefore, the criterion for convergence at ζ → ∞ is

1
2
+ μ − κ = − j , j = 0, 1, 2, 3... (48)

In this case, the function M is reduced to a polynomial of degree
j, a generalized Laguerre-polynomial. The pressure perturbation
decays exponentially for ζ → ∞. Otherwise, the pressure pertur-
bation diverges. Taking the square of

μ = κ − j − 1
2

(49)

we obtain

μ2 − κ2 + 2 κ ( j +
1
2

) − ( j +
1
2

)2 = 0. (50)

Fig. 1. The ridges of the fundamental-mode for kx = ± 1, ± 10,
± 100 Mm−1.

Inserting κ and μ, we finally obtain the dispersion relation:

∓ 1
2 λ2

A
√

(A − 1)2 − 4 C +
1

4λ2
+

3 A2

4 λ2

− A
[ 1

2 λ2
+

1
2 λ

]
− 1
λ2

C

− Λ
2

λ2

⎡⎢⎢⎢⎢⎢⎣ D2

λ2
+

B2 A2

4 λ2
+ B2

[ 1
2
− 1

2 λ

]2

− A B D
λ2

− D B
λ

[
1 − 1

λ

]
+

A B2

2 λ

[
1 − 1

λ

] ⎤⎥⎥⎥⎥⎥⎦

+
2 Λ
λ

⎡⎢⎢⎢⎢⎢⎣ D
λ
− B A

2 λ
− B

[ 1
2
− 1

2 λ

] ⎤⎥⎥⎥⎥⎥⎦ ( j +
1
2

)

− ( j +
1
2

)2 = 0. (51)

This equation is solved numerically. For v = 0 it reduces to the
dispersion relation given by Schmitz & Steffens 1999. For the
sun, we take a velocity corresponding to solar rotation at mid
latitudes: v = 2 π 6.96 1010/(28× 86 400) cm/s = 1.8×105 cm/s.
For special cases as λ = 1 or γ → ∞ there is no simplification
of the relation. Only two cases are simple, that of the f-mode
and that of the homogeneous gas, which will be discussed in the
following two sections.

8. The f-mode

From Eqs. (7) and (8), for Δ p = 0, we obtain the fundamental
mode

(ω − kx v ) ω = k g. (52)

The solution reads:

ω =
√
g k + v2 k2

x/4 + v kx/2. (53)

Figure 1 shows ridges of the f-mode for v = 0 and for the solar
rotational velocity for various kx.
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Fig. 2. Ridges of the modes of the homogeneous gas for H =
103 km and H = 104 km and kx = 0.1 Mm−1.

9. The homogeneous gas

As this case is certainly not new we shall be brief. We need it
only for a comparison and the explanation of the behavior of the
stellar modes. The wave equation of the displacement ξ reduces
to

d2 ξ

d z2
+

1

c2
0

[
ω2 − k2 c2

0 − v kxω
]
ξ = 0. (54)

The solution is:

ξ = sin( kz z) (55)

with

kz =
1
c0

√
ω2 − k2 c2

0 − v kxω . (56)

We put boundary conditions

ξ = 0 at z = 0 and z = πH (57)

to obtain

ω2 − v kxω − ( k2
x + k2

y ) c2
0 − c2

0
1
π2H2

= 0. (58)

The solution is:

ω =
1
2

[
vkx +

√
k2

x (v2 + 4c2
0) + 4c2

0k2
y + c2

0

4
π2H2

]
· (59)

Figure 2 shows the frequency ω as a function of k for H =
103 km and 104 km.

The range of the amplitudes of the f-mode extends from z =
−∞ to z = +∞. Accordingly all ridges are different.

On the other hand, the range of the oscillations of the homo-
geneous gas depends on the height H. With increasing height,
up to H ≈ 104 km the differences of the ridges increase. Above
H ≈ 104 km, there are no differences.

10. The Sun

For the Sun we studied the cases n = 3/2 and n = 3 for various
values of kx. However, before looking at the results for the effects
of rotation, let us first compare the eigenmodes of our idealized
model with a real solar model and actual observations. Figures 3

Fig. 3. Comparison of the eigenmodes p1 to p5 of our analytical model
(solid lines) for n = 3 with those of model S of Christensen-Daalsgard
et al. (1996) (dotted lines) and high-degree observations of p1 by
SOHO/MDI (dashed line; from Duvall et al. 1998).

Fig. 4. Same as Fig. 3 but for n = 3/2.

and 4 show comparisons of the p1 to p5 modes of our analyti-
cal model with those of model S of Christensen-Dalsgaard et al.
(1996) and the high-degree extension of the p1 mode as observed
by SOHO/MDI (Duvall et al. 1998).

While one might claim that the mode structure is qualita-
tively similar in the two models, quantitatively there are con-
siderable differences, which is not surprising. The differences
between our analytical model and model S are actually bigger
than the effects of rotation which are discussed below. Figures 3
and 4 demonstrate the limitations of our idealized model for di-
rect comparisons with current observations. It clearly lacks es-
sential aspects of the complex physics of the sun. It is interesting
to note that the differences between the two models are smaller
for n = 3 (Fig. 3) than for n = 3/2 (Fig. 4). The case n = 3 appar-
ently is a better approximation to the real sun. This is probably
because n = 3/2 or Γ = 5/3 is the index of a neutral gas, whereas
n = 3 or Γ = 4/3 is nearer to Γ ≈ 1.2 due to ionization.

While analytical studies are more limited than numerical
studies because of the necessary simplifications and approxima-
tions, they provide complimentary information that is useful for
developing a fundamental understanding of the basic physical
problems at hand.
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Fig. 5. Ridges of the modes for n = 3/2 and kx = 0.1 Mm−1.

Fig. 6. Ridges of the modes for n = 3 and kx = 0.1 Mm−1.

Figures 5 and 6 show the p1 to p5 modes without rotation
and with solar rotation at mid latitudes for kx = ±0.1 Mm−1,
for n = 3/2 and n = 3, respectively. These are cuts through the
kx − ky − ω cube at fixed kx. As expected, the ridges for pos-
itive kx are above, the ridges for negative kx below the ridges
of the windless case. With increasing kx, the differences of
the ridges increase. However, there are no more differences for
kx > 1 Mm−1. The reason is that the range of oscillations with
l > 1000 is restricted to the outer convection zone and the at-
mosphere. Therefore, as for the homogeneous gas, there are no
differences for higher values of kx.

The findings can be compared to observed high-resolution
k − ω diagrams as presented e.g. by Mitra-Kraev et al. (2008).
The observed broadening of the ridges of Fig. 1 in their paper

corresponds to the broadening of the ridges of Figs. 1, 3, and 4 in
this paper. In both cases, the f-mode shows the strongest effects.

11. Conclusions

We presented a simple analytic model of a convection zone with
an overlying isothermal atmosphere. As regards the representa-
tion of the dispersion relation F(ω, k) = 0, this model does not
have the shortcomings of two-layer models. For the new model
the three-dimensional adiabatic wave equation can be solved an-
alytically by reduction to Whittaker’s differential equation. The
dispersion relation is an algebraic equation, which is solved nu-
merically. We presented dispersion curves of acoustic modes
with γ � 1 + 1/n and of modes with γ = 1 + 1/n. Two special
cases were studied separately: the f-mode and the homogeneous
gas. The model can be used for further investigations; for exam-
ple, to study the problem of the generation of the observed ridges
above the acoustic cut-off frequency, the existence of modes with
complex frequencies, and also gravity modes. As for the simple
polytropic layer, the amplitudes of the modes are given in terms
of Whittaker functions. The mathematical procedure is similar
to the procedure used for the simple polytropic layer.
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his standard solar model.
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